INTERFACE:
subroutine generate_modelDESCRIPTION:
Computes the parameters of an instance of the `generic' twoequation model according to the specifications set in gotmturb.nml. This model solves (152) for the and (168) for the generic lengthscale defined in section 4.16 together with an Algebraic Stress Model. For several simple turbulent flows, analytical solutions of this models exist and can be used to calibrate the model coefficients. The method is described in great detail in Umlauf and Burchard (2003). Also users that are not interested in the generic part of GOTM should have a look in this section, because results derived here are referenced in later parts of the manual.
After the call to generate_model(), all parameters of the generic twoequation model are known. The user has full control over specific properties of the resulting model (see section 4.16).
In the following sections, the effects of model parameters on the behaviour of twoequation models in specific situations are briefly reviewed. For a more indepth discussion, see Umlauf and Burchard (2003).
The logarithmic boundary layer
In the logarithmic boundary layer one has and by defintion. Under these conditions it is easy to show that a solution of (152) is
Decay of homogeneous turbulence
Another example of a simple but fundamental turbulent situation is the temporal decay of isotropic, homogeneous turbulence (approximated by the spatial decay of turbulence behind grids in laboratory settings). At large times, , data from many experiments are well described by a power law of the form
In homogeneous decaying turbulence, (152) and (168) reduce to a balance between the rate and dissipation terms, respectively. The coupled system of ordinary differential equations can be solved for given initial values and (see e.g. Wilcox (1998)). The solution can be shown to reduce to (105) at large times. Then, the decay exponent, , is determined by
Homogeneous turbulent shearflows
A natural extension of decaying homogeneous turbulence is the inclusion of a homogeneous shear and an aligned homogeneous stratification. Since turbulence is still assumed to be homogeneous, the divergence of any turbulent transport term vanishes and the interplay between the stabilizing effects of stratification and the destabilizing action of shear can be isolated. Thus, it is not surprising that this interesting special case of turbulence has been explored extensively by laboratory experiments (Tavoularis and Corrsin (1981a); Tavoularis and Corrsin (1981b), Tavoularis and Karnik (1989), Rohr et al. (1988)), by Direct Numerical Simulation (Gerz et al. (1989), Holt et al. (1991), Jacobitz et al. (1997), Shih et al. (2000)) and by LargeEddy Simulation (Kaltenbach et al. (1994)). That flows of this kind are crucial also in many oceanographic flows has been pointed out by Baumert and Peters (2000).
In the context of the generic twoequation model, this turbulent flow is mathematically established by neglecting the turbulent transport terms and the advective part of the material time derivative. Then, (152) and (168) reduce to a set of ordinary differential equations. Using the chain rule of differentiation, the relation
Tennekes (1989) derived an equation similar to (108), however only for the special case of the  model applied to unstratified flows, and stated that `on dimensional grounds, cannot depend upon the shear because the shear is homogeneous and cannot impose a length scale'. This argument requires immediately
Shearfree turbulence, wavebreaking
The first step in understanding the behaviour of twoequation models in the surface layer affected by breaking gravity waves is the investigation of a special case, in which turbulence decays spatially away from a planar source without mean shear. Turbulence generated by an oscillating grid in a water tank has been used in various laboratory settings to study the spatial decay of velocity fluctuations in this basic turbulent flow, where turbulent transport and dissipation balance exactly. For a summary of these results, see Umlauf et al. (2003).
All grid stirring experiments confirmed a power law for the decay of and a linear increase of the length scale, , according to
In stationary, shearfree, unstratified turbulence, the generic model simplifies to a balance between the turbulent transport terms and the dissipative terms in (152) and (168). Using the definition of in (167) and the scaling for the rate of dissipation, (155), the transport and dissipation of and are balanced according to
For the solution of this nonlinear system , we inserted the expressions (110) in (111). From (155) and (46), powerlaws follow then also for and .
Inserting (110) into (111) yields the equation
We note that with the help of (106) and (109), the relation (104) can be rewritten as
After assigning appropriate values for the von Kármán constant, , the decay coefficient of homogeneous turbulence, , the spatial decay rate, , and the slope, , an infinite number of pairs of and satisfying (115) can be derived. Each corresponds to a different twoequation model. Some example are given in table 5 (see Umlauf and Burchard (2003)).

Mixed layer deepending
The correct prediction of mixed layer deepening into a stratified fluid due to a wind stress at the surface is one of the most crucial requirements for an oceanic turbulence model. This situation has been frequently interpreted by analogy with the classical experiment of Kato and Phillips (1969) and its reinterpretation by Price (1979), in which the entrainment in a linearly stratified fluid subject to a constant surface stress was investigated. The results of this experiment have been used by numerous authors to calibrate their turbulence models.
In particular, it has been shown by Burchard and Bolding (2001) for the  model of Rodi (1987), by Burchard (2001b) for the model of Mellor and Yamada (1982), and by Umlauf et al. (2003) for the  model of Wilcox (1988) that, remarkably, the mixed layer depth predicted by these models depends almost exclusively on the value of the Richardson number, , computed in a homogeneous, stratified shearflow in steadystate. This value is usually referred to as the steadystate Richardson number, (Rohr et al. (1988), Kaltenbach et al. (1994), Jacobitz et al. (1997), Shih et al. (2000)).
Umlauf et al. (2003) showed that in the context of models considered in GOTM, the steadystate Richardson number is determined by the relation
Note, that in instable situations, a different value of the parameter needs to be used. This does not cause a discontinuity in the model because the buoyancy term in (168) is zero at the transition. An evaluation of the lengthscale equations in convective flows, however, is intimately related to the thirdorder modelling of the triple correlation terms, a topic outside the scope of this documentation.
USES:
IMPLICIT NONEREVISION HISTORY:
Original author(s): Lars Umlauf
Karsten Bolding 20121228