Bibliography

Axell, L., and O. Liungman, A one-equation turbulence model for geophysical applications: Comparison with data and the k-epsilon model, Environmental Fluid Mechanics, 1, 71-106, 2001.

Baumert, H., and H. Peters, Second-moment closures and length scales for weakly stratified turbulent shear flows, J. Geophys. Res., 105(C3), 6453-6468, 2000.

Baumert, H., and G. Radach, Hysteresis of turbulent kinetic energy in nonrotational tidal flows, J. Geophys. Res., 97(C), 3669-3677, 1992.

Beckers, J.-M., La méditerranée occidentale: de la modélisation mathématique à la simulation numérique, Ph.D. thesis, Université de Liège, Belgium, collection des publications de la Faculté des Sciences Appliquées No. 136, 1995.

Berliand, M. E., and T. G. Berliand, Measurement of the effective radiation of the earth with consideration of the effect of cloudiness (in russian), Izv. Akad. Nauk SSSR, Ser. Geofiz., 1, 1952.

Bignami, F., S. Marullo, R. Santoleri, and M. E. Schiano, Long-wave radiation budget in the Mediterranean Sea, J. Geophys. Res., 100, 2501-2514, 1995.

Blackadar, A. K., The vertical distribution of wind and turbulent exchange in a neutral atmosphere, J. Geophys. Res., 67, 3095-3102, 1962.

Bolding, K., H. Burchard, T. Pohlmann, and A. Stips, Turbulent mixing in the Northern North Sea: a numerical model study, Cont. Shelf Res., 22, 2707-2724, 2002.

Bradshaw, P., An Introduction to Turbulence and its Measurement, Pergamon, 1975.

Briggs, D. A., J. H. Ferziger, J. R. Koseff, and S. G. Monismith, Entrainment in a shear-free turbulent mixing layer, J. Fluid Mech., 310, 215-241, 1996.

Brockmann, U. H., V. Ittekott, G. Kattner, K. Eberlein, and K. D. Hammer, Release of dissolved organic substances in the course of phytoplankton blooms, in North Sea Dynamics, edited by J. Sündermann and W. Lenz, pp. 530-548, Springer, 1983.

Brockmann, U. H., K. Eberlein, K. Huber, H.-J. Neubert, G. Radach, and K. Schulze (Eds.), JONSDAP '76: FLEX/INOUT Atlas, Vol. 1, no. 63 in ICES Oceanographic Data Lists and Inventories, 450 pp. pp., Conseil International pour l'Exploration de la Mer, Copenhagen, Denmark, 1984.

Bruggeman, J., H. Burchard, B. Kooi, and B. Sommeijer, A second-order, unconditionally stable, mass-conserving integration scheme for biochemical systems, Appl. Num. Math, 57, 36-58, 2006.

Burchard, H., Recalculation of surface slopes as forcing for numerical water column models of tidal flow, App. Math. Modelling, 23, 737-755, 1999.

Burchard, H., Simulating the wave-enhanced layer under breaking surface waves with two-equation turbulence models, J. Phys. Oceanogr., 31, 3133-3145, 2001a.

Burchard, H., Note on the $ q^2
l$ equation by Mellor and Yamada [1982], J. Phys. Oceanogr., 31, 1377-1387, 2001b.

Burchard, H., Energy-conserving discretisation of turbulent shear and buoyancy production, Ocean Modelling, 4, 347-361, 2002a.

Burchard, H., Applied Turbulence Modelling in Marine Waters, no. 100 in Lecture Notes in Earth Sciences, Springer, 2002b.

Burchard, H., and H. Baumert, On the performace of a mixed-layer model based on the $ k$-$ \epsilon$ turbulence closure, J. Geophys. Res. (C5), 100, 8523-8540, 1995.

Burchard, H., and H. Baumert, The formation of estuarine turbidity maxima due to density effects in the salt wedge. A hydrodynamic process study, J. Phys. Oceanogr., 28, 309-321, 1998.

Burchard, H., and K. Bolding, Implementation of the Verduin and Backhaus seagrass-current interaction into the General Ocean Turbulence Model (GOTM). A short feasability study, unpublished manuscript, 2000.

Burchard, H., and K. Bolding, Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer, J. Phys. Oceanogr., 31, 1943-1968, 2001.

Burchard, H., and E. Deleersnijder, Stability of algebraic non-equilibrium second-order closure models, Ocean Modelling, 3, 33-50, 2001.

Burchard, H., and O. Petersen, Hybridisation between $ \sigma$ and $ z$ coordinates for improving the internal pressure gradient calculation in marine models with steep bottom slopes, Int. J. Numer. Meth. Fluids, 25, 1003-1023, 1997.

Burchard, H., and O. Petersen, Models of turbulence in the marine enviroment - a comparative study of two-equation turbulence models, J. Mar. Syst., 21, 29-53, 1999.

Burchard, H., O. Petersen, and T. P. Rippeth, Comparing the performance of the Mellor-Yamada and the $ k-\epsilon$ two-equation turbulence models, J. Geophys. Res. (C5), 103, 10,543-10,554, 1998.

Burchard, H., K. Bolding, and M. R. Villarreal, GOTM - a general ocean turbulence model. Theory, applications and test cases, Tech. Rep. EUR 18745 EN, European Commission, 1999.

Burchard, H., K. Bolding, T. P. Rippeth, A. Stips, J. H. Simpson, and J. Sündermann, Microstructure of turbulence in the Northern North Sea: A comparative study of observations and model simulations, Journal of Sea Research, 47, 223-238, 2002.

Burchard, H., E. Deleersnijder, and A. Meister, A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations, 47, 1-30, 2003.

Burchard, H., K. Bolding, and M. R. Villarreal, Three-dimensional modelling of estuarine turbidity maxima in a tidal estuary, Ocean Dynamics, 54, 250-265, 2004.

Burchard, H., E. Deleersnijder, and A. Meister, Application of Modified Patankar schemes to stiff biogeochemical models for the water column, Ocean Dynamics, 55, 326-337, 2005.

Burchard, H., K. Bolding, W. Kühn, A. Meister, T. Neumann, and L. Umlauf, Description of a flexible and extendable physical-biogeochemical model system for the water column, 61, 180-211, 2006.

Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, Ocean turbulence. Part I: One-point closure model--momentum and heat vertical diffusivities, J. Phys. Oceanogr., 31(6), 1413-1426, 2001.

Charnock, H., Wind stress on a water surface, Q. J. R. Meteorol. Soc., 81, 639-640, 1955.

Cheng, Y., V. M. Canuto, and A. M. Howard, An improved model for the turbulent PBL, J. Atmos. Sci., 59, 1550-1565, 2002.

Clark, N. E., L. Eber, R. M. Laurs, J. A. Renner, and J. F. T. Saur, Heat exchange between ocean and atmoshere in the Eastern North Pacific for 1961-1971, Tech. Rep. NMFS SSRF-682, NOAA, U.S. Dept. of Commerce, Washington, D.C., 1974.

Craft, T. J., N. Z. Ince, and B. E. Launder, Recent developments in second-moment closure for buoyancy-affected flows, Dynamics of Atmospheres and Oceans, 23, 99-114, 1996.

Craig, P. D., Velocity profiles and surface roughness under breaking waves, J. Geophys. Res., 101, 1265-1277, 1996.

Craig, P. D., and M. L. Banner, Modeling wave-enhanced turbulence in the ocean surface layer, J. Phys. Oceanogr., 24, 2546-2559, 1994.

Crank, J., and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Proc. Cambridge Philos. Soc., 43, 50-67, re-published in: John Crank 80th birthday special issue Adv. Comput. Math. 6 (1997) 207-226, 1947.

d'Alessio, S. J. D., K. Abdella, and N. A. McFarlane, A new second-order turbulence closure scheme for modeling the oceanic mixed layer, J. Phys. Oceanogr., 28, 1624-1641, 1998.

Davies, J. M., and R. Paine, Supply of organic matter in the northern North Sea during a spring phytoplankton bloom, 78, 315-324, 1984.

Deleersnijder, E., and H. Burchard, Reply to Mellor's comments on stability of algebraic non-equilibrium second-order closure models, Ocean Modelling, 5, 291-293, 2003.

Demirov, E., W. Eifler, M. Ouberdous, and N. Hibma, Ispramix -- a three-dimensional free surface model for coastal ocean simulations and satellite data assimilation on parallel computers, Tech. Rep. EUR 18129 EN, European CommissionJoint Reseach Center, Ispra, Italy, 1998.

Denman, K. L., A time-dependent model of the upper ocean, J. Phys. Oceanogr., 3, 173-184, 1973.

Domaradzki, J. A., and G. L. Mellor, A simple turbulence closure hypothesis for the triple velocity correlation functions in homogeneous isotropic turbulence, J. Fluid Mech., 140, 45-61, 1984.

Durksi, S. M., S. M. Glenn, and D. Haidvogel, Vertical mixing schemes in the coastal ocean: Comparision of the level 2.5 Mellor-Yamada scheme with an enhanced version of the K profile parameterization, J. Geophys. Res., 109(C01015), doi:10.1029/2002JC001702, 2004.

Eberlein, K., G. Kattner, U. Brockmann, and K. Hammer, Nitrogen and phosphorus in different water layers at the central station during FLEX '76, "Meteor"-Forsch.-Ergebnisse, Reihe A, 22, 87-98, 1980.

Eifler, W., and W. Schrimpf, Ispramix, a hydrodynamic program for computing regional sea circulation patterns and transfer processes, Tech. Rep. EUR 14856 EN, European Commission Joint Reseach Center, Ispra, Italy, 1992.

Fairall, C. W., E. F. Bradley, J. Godfrey, G. A. Wick, J. B. Edson, and G. Young, Cool-skin and warm-layer effects on sea surface temperature, J. Geophys. Res., 101, 1295-1308, 1996a.

Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, Bulk parameterization of air-sea fluxes for TOGA-COARE, J. Geophys. Res., 101, 3747-3764, 1996b.

Fasham, M. J. R., H. W. Ducklow, and S. M. McKelvie, A nitrogen-based model of plankton dynamics in the oceanic mixed layer, J. Mar. Res., 48, 591-639, 1990.

Feistel, R., A new extended Gibbs thermodynamic potential of seawater, Prog. Oceanogr., 58, 43-115, http://authors.elsevier.com/sd/article/S0079661103000880 corrigendum 61 (2004) 99, 2003.

Fofonoff, N. P., and R. C. Millard, Algorithms for the computation of fundamental properties of seawater, Unesco technical papers in marine sciences, 44, 1-53, 1983.

Frey, H., A three-dimensional, baroclinic shelf sea circulation model -- 1. The turbulence closure scheme and the one-dimensional test model, Cont. Shelf Res., 11(4), 365-395, 1991.

Friedrich, H., Simulation of the thermal stratification at the FLEX central station with a one-dimensional integral model, in North Sea Dynamics, edited by J. Sündermann and W. Lenz, pp. 396-411, Springer, 1983.

Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, A quasi-equilibrium turbulent energy model for geophysical flows, J. Atmos. Sci., 45(1), 55-62, 1988.

Gaspar, P., Y. Gregoris, and J. Lefevre, A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site, J. Geophys. Res., 95, 16,179-16,193, 1990.

Gerz, T., U. Schumann, and S. E. Elghobashi, Direct numerical simulation of stratified homogeneous turbulent shear flows, J. Fluid Mech., 200, 563-594, 1989.

Geyer, W. R., The importance of suppression of turbulence by stratification on the estuarine turbidity maximum, Estuaries, 16, 113-125, 1993.

Gibson, M. M., and B. E. Launder, On the calculation of horizontal, turbulent, free shear flows under gravitational influence, J. Heat Transfer, 98C, 81-87, 1976.

Gibson, M. M., and B. E. Launder, Ground effects on pressure fluctuations in the atmospheric boundary layer, J. Fluid Mech., 86, 491-511, 1978.

Harrison, W. G., L. Harris, and B. D. Irwin, The kinetics of nitrogen utilization in the oceanic mixed layer: Nitrate and ammonium interactions at nanomolar concentrations, 41, 16-32, 1996.

Hastenrath, S., and P. J. Lamb, Heat budget atlas of the tropical Atlantic and Eastern Pacific Oceans, Tech. rep., University of Wisconsin, Madison, 1978.

Holt, S. E., J. R. Koseff, and J. H. Ferziger, A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence, J. Fluid Mech., 237, 499-539, 1991.

Jackett, D. R., T. J. McDougall, R. Feistel, D. G. Wright, and S. M. Griffies, Updated algorithms for density, potential temperature, conservative temperature and freezing temperature of seawater, Journal of Atmospheric and Oceanic Technology, submitted, 2005.

Jacobitz, F. C., S. Sarkar, and C. W. van Atta, Direct numerical simulations of the turbulence evolution in a uniformly sheared and stably stratifed flow, J. Fluid Mech., 342, 231-261, 1997.

Jerlov, N. G., Optical oceanography, Elsevier, 1968.

Jin, L. H., R. M. C. So, and T. B. Gatski, Equilibrium states of turbulent homogeneous buoyant flows, J. Fluid Mech., 482, 207-233, 2003.

Kaltenbach, H.-J., T. Gerz, and U. Schumann, Large-Eddy simulation of homogeneous turbulence and diffusion in stably stratified shear flow, J. Fluid Mech., 280, 1-40, 1994.

Kantha, L. H., On an improved model for the turbulent pbl, J. Atmos. Sci., 60(17), 2239-2246, 2003.

Kantha, L. H., and C. A. Clayson, An improved mixed layer model for geophysical applications, J. Geophys. Res., 99(C12), 25,235-25,266, 1994.

Kato, H., and O. M. Phillips, On the penetration of a turbulent layer into stratified fluid, J. Fluid Mech., 37(4), 643-655, 1969.

Kondo, J., Air-sea bulk transfer coefficients in diabatic conditions, Bound. Layer Meteor., 9, 91-112, 1975.

Krause, M., and G. Radach, On the succession of developmental stages of herbivorous zooplankton in the northern north sea during flex '76, "Meteor"-Forsch.-Ergebnisse, Reihe A, 22, 133-149, 1980.

Kühn, W., and G. Radach, A one-dimensional physical-biological model study of the pelagic nitrogen cycling during the spring bloom in the northern North Sea (FLEX'76), J. Mar. Res., 55, 687-734, 1997.

Large, W. G., J. C. McWilliams, and S. C. Doney, Oceanic vertical mixing: a review and a model with nonlocal boundary layer parameterisation, Rev. Geophys., 32, 363-403, 1994.

Launder, B. E., G. J. Reece, and W. Rodi, Progress in the development of Reynolds stress turbulent closure, J. Fluid Mech., 68, 537-566, 1975.

Leonard, B. P., The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection, 88, 17-74, 1991.

Liu, W. T., K. B. Katsaros, and J. A. Businger, Bulk parameterization of the air-sea exchange of heat and water vapor including the molecular constraints at the interface, J. Atmos. Sci., 36, 1722-1735, 1979.

Luyten, P. J., E. Deleersnijder, J. Ozer, and K. G. Ruddik, Presentation of a family of turbulence closure models for stratified shallow water flows and preliminary application to the Rhine outflow region, Cont. Shelf Res., 16(1), 1996.

Martin, P. J., Simulation of the mixed layer at OWS November and Papa with several models, J. Geophys. Res., 90(C1), 903-916, 1985.

Mellor, G. L., Retrospect on oceanic boundary layer modeling and second moment closure, in Parameterization of Small-Scale Processes; Proc. of the Aha Hulikoa Hawaiian Winter Workshop, edited by P. Mueller and D. Henderson, pp. 251-271, University of Hawaii at Manoa, Honolulu, 1989.

Mellor, G. L., One-dimensional ocean surface layer modeling, a problem and a solution, J. Phys. Oceanogr., 31(3), 790-809, 2001.

Mellor, G. L., and T. Yamada, A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 31, 1791-1806, 1974.

Mellor, G. L., and T. Yamada, Development of a tubulence closure model for geophysical fluid problems, Reviews of Geophysics and Space Physics, 20(4), 851-875, 1982.

Mohamed, M. S., and J. C. Larue, The decay power law in grid-generated turbulence, J. Fluid Mech., 219, 195-214, 1990.

Munk, W. H., and E. R. Anderson, Notes on the theory of the thermocline, J. Mar. Res., 3, 276-295, 1948.

Neumann, T., W. Fennel, and C. Kremp, Experimental simulations with an ecosystem model of the Baltic Sea: A nutrient load reduction experiment, Global Biogeochemical Cycles, 16, 10.1029/2001GB001,450, 2002.

Pacanowsci, R. C., and S. G. H. Philander, Parameterization of vertical mixing in numerical models of tropical oceans, J. Phys. Oceanogr., 11, 1443-1451, 1981.

Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Taylor & Francis, 1980.

Paulson, C. A., and J. J. Simpson, Irradiance measurements in the upper ocean, J. Phys. Oceanogr., 7, 952-956, 1977.

Payne, R. E., Albedo of the sea surface, J. Atmos. Sci., 9, 959-970, 1972.

Pietrzak, J., The use of TVD limiters for forward-in-time upstream-biased advection schemes in ocean modeling, Monthly Weather Review, 126, 812-830, 1998.

Pohlmann, T., Predicting the thermocline in a circulation model of the North Sea - Part I: Model description, calibration and verification, Cont. Shelf Res., 16, 131-146, 1996.

Pohlmann, T., Estimating the influence of advection during FLEX'76 by means of a three-dimensional shelf sea circulation model, Dtsch. Hydrogr. Z., 49, 215-226, 1997.

Prandke, H., K. Holtsch, and A. Stips, MITEC technology development: The microstructure/turbulence measuring system mss, Tech. Rep. EUR 19733 EN, European Commission, Joint Research Centre, Ispra, Italy, 2000.

Price, J. F., On the scaling of stress driven entrainment experiments, J. Fluid Mech., 90(3), 509-529, 1979.

Radach, G., J. Trahms, and A. Weber, The chloroophyll development at the central station during FLEX '76 - Two data sets., CES C.M., C3, 3-21, 1980.

Radach, G., J. Berg, B. Heinemann, and M. Krause, On the relation of primary production to grazing during the Fladenground Experiment 1976 (FLEX '76), in Flows of Engergy and Materials in Marine Ecosystems, edited by M. J. R. Fasham, pp. 597-625, NATO Conf. Ser. IV: Marine Sciences 13, New York, 1984.

Reed, R. K., On estimating insolation over the ocean, J. Phys. Oceanogr., 7, 482-485, 1977.

Rippeth, T. P., N. Fisher, and J. H. Simpson, The semi-diurnal cycle of turbulent dissipation in the presence of tidal straining, J. Phys. Oceanogr., 31, 2458-2471, 2001.

Robert, J. L., and Y. Ouellet, A three-dimensional finite element model for the study of steady and non-steady natural flows, in Three-dimensional models of marine and estuarine dynamics, edited by J. C. Nihoul and B. M. Jamart, no. 45 in Elsevier Oceanography Series, Elsevier, 1987.

Rodi, W., A new algebraic relation for calculating the Reynolds stresses, Z. angew. Math. Mech., 56, T 219-T 221, 1976.

Rodi, W., Examples of calculation methods for flow and mixing in stratified fluids, J. Geophys. Res. (C5), 92, 5305-5328, 1987.

Rohr, J. J., E. C. Itsweire, K. N. Helland, and C. W. van Atta, Growth and decay of turbulence in a stably stratified shear flow, J. Fluid Mech., 195, 77-111, 1988.

Rosati, A., and K. Miyakoda, A general circulation model for upper ocean simulation, J. Phys. Oceanogr., 18, 1601-1626, 1988.

Rotta, J., Statistische Theorie nichthomogener Turbulenz. 1. Mitteilung, Z. Phys., 129, 547-572, 1951.

Samarskij, A. A., Theorie der Differenzenverfahren, Akademische Verlagsgesellschaft Geest and Portig, Leipzig, 1984.

Sander, J., Dynamical equations and turbulent closures in geophysics, Continuum Mech. Thermodyn., 10, 1-28, 1998.

Schumann, U., and T. Gerz, Turbulent mixing in stably stratified shear flows, J. Appl. Meteorol., 34, 33-48, 1995.

Sharples, J., Time-dependent stratification in regions of large horizontal density gradient, Ph.D. thesis, School of Ocean Sciences, University of Wales, Bangor, 1992.

Shih, L. H., J. R. Koseff, J. H. Ferziger, and C. R. Rehmann, Scaling and parameterization of stratified homogeneous turbulent shear flow, J. Fluid Mech., 412, 1-20, 2000.

Simpson, J. H., H. Burchard, N. R. Fisher, and T. P. Rippeth, The semi-diurnal cycle of dissipation in a ROFI: model-measurement comparisons, Cont. Shelf Res., 22, 1615-1628, 2002.

Simpson, J. J., and C. A. Paulson, Mid-ocean observations of atmosphere radiation, Quart. J. Roy. Meteor. Soc., 105, 487-502, 1999.

Smith, J. D., and S. R. McLean, Spatially averaged flow over a wavy surface, J. Geophys. Res., 82, 1735-1746, 1977.

So, R. M. C., P. Vimala, L. H. Jin, and C. Y. Zhao, Accounting for buoyancy effects in the explicit algebraic stress model: homogeneous turbulent shear flows, Theoret. Comput. Fluid Dynamics, 15, 283-302, 2002.

So, R. M. C., L. H. Jin, and T. B. Gatski, An explicit algebraic model for turbulent buoyant flows, in Proceedings of the FEDSM '03: 4th ASME-JSME Joint Fluids Engineering Conference, Honolulu, Hawaii, USA, 2003.

Soetje, K. C., and K. Huber, A compilation of data on the thermal stratification at the central station in the northern North Sea during FLEX'76, "Meteor"-Forsch.-Ergebnisse, Reihe A, 22, 69-77, 1980.

Speziale, C. G., S. Sarkar, and T. B. Gatski, Modeling the pressure-strain correlation of turbulence: an invariant dynamical systems approach, J. Fluid Mech., 227, 245-272, 1991.

Stips, A., H. Burchard, K. Bolding, and W. Eifler, Modelling of convective turbulence with a two-equation $ k$- $ \varepsilon $ turbulence closure scheme, Ocean Dynamics, 52, 153-168, 2002.

Tavoularis, S., and S. Corrsin, Experiments in a nearly homogenous turbulent shear flow with a uniform mean temperature gradient. Part 1, J. Fluid Mech., 104, 311-348, 1981a.

Tavoularis, S., and S. Corrsin, Experiments in a nearly homogenous turbulent shear flow with a uniform mean temperature gradient. Part 2. The fine structure, J. Fluid Mech., 104, 349-367, 1981b.

Tavoularis, S., and U. Karnik, Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence, J. Fluid Mech., 204, 457-478, 1989.

Tennekes, H., The decay of turbulence in plane homogeneous shear flow, in Lecture Notes on Turbulence, edited by J. R. Herring and J. C. McWilliams, pp. 32-35, World Scientific, 1989.

Tennekes, H., and J. L. Lumley, A First Course in Turbulence, MIT Press, 1972.

Townsend, A. A., The Structure of Turbulent Shear flow, Cambridge University Press, 1976.

Umlauf, L., and H. Burchard, A generic length-scale equation for geophysical turbulence models, J. Mar. Res., 61, 235-265, 2003.

Umlauf, L., and H. Burchard, Second-order turbulence closure models for geophysical boundary layers. a review of recent work, Cont. Shelf. Res., 25, 795-827, 2005.

Umlauf, L., H. Burchard, and K. Hutter, Extending the $ k$-$ \omega$ turbulence model towards oceanic applications, Ocean Modelling, 5, 195-218, 2003.

Verduin, J. J., and J. O. Backhaus, Dynamics of plant-flow interactions for the seagrass amphibolis antarctica: Field observations and model simulations, Estuarine, Coastal and Shelf Science, 50, 185-204, 2000.

Villarreal, M. R., Parameterisation of turbulence in the ocean and application of a 3D baroclinic model to the Ria de Pontevedra, Ph.D. thesis, Departamento de Fisica da Materia Condensada, Grupo de Fisica Non-Lineal, Universidade de Santiago de Compostela, 2000.

Visser, A. W., Using random walk models to simulate the vertical distribution of particles in a turbulent water column, 158, 275-281, 1997.

Weigel, P., and E. Hagmeier, Primary production measurements in the Fladen Ground area (North Sea) during the first phase of a spring phytoplankton bloom, "Meteor"-Forsch.-Ergebnisse, Reihe A, 22, 79-86, 1980.

Wilcox, D. C., Reassessment of the scale-determining equation for advanced turbulence models, AIAA Journal, 26(11), 1299-1310, 1988.

Wilcox, D. C., Turbulence Modeling for CFD, 2nd ed., DCW Industries, Inc., 1998.

Xing, J., and A. N. Davies, Application of three dimensional turbulence energy models to the determination of tidal mixing and currents in a shallow sea, Prog. Oceanogr., 35, 153-205, 1995.

Zeierman, S., and M. Wolfshtein, Turbulent time scale for turbulent-flow calculations, AIAA J., 24(10), 1606-1610, 1986.

Zhao, C. Y., R. M. C. So, and T. B. Gatski, Turbulence modeling effects on the prediction of equilibrium states of buoyant shear flows, Theoret. Comput. Fluid Dynamics, 14, 399-422, 2001.



Karsten Bolding 2012-12-28